Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

 CONTENTS

 1. Introduction..1

 1.1. About the author..1

 1.2. About PBASIC..1

 1.3. Acknowledgements..1

 1.4. The package...1

 2. General description.......................................2

 2.1. Interfacing with the editor...............................2

 2.2. Running PBasic..2

 2.3. Breaking out of PBasic programs...........................3

 2.4. PBASIC on the PC..3

 3. Conventions used..3

 3.1. Mathematical expressions..................................3

 3.2. Notes on conventions used.................................3

 4. Statements and Functions..................................5

 5. Appendix...29

 5.1. Error numbers and messages...............................29

 5.2. ASCII chart..32

 5.3. ASCII bitmaps..33

 5.4. Portfolio memory map.................................... 34

 5.5. Port addresses...35

 5.6. Sample programs..36

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

1. INTRODUCTION
1.1. ABOUT THE AUTHOR

 BJ Gleason is an instructor at The American University in the Computer Science

and Information Systems Department. He has been programming for over a decade

now. He is a monthly columnist for AtariUser Magazine, and writes a PBASIC

programming column for RE:Port.

Address : BJ Gleason

 The American University CSIS (Thin Air Labs)

 4400 Massachusetts Avenue, N.W.

 Washington, DC 20016

Compuserve: 73337,201

EMail: bjgleas@auvm.american.edu

1.2. THE AUTHOR ABOUT PBASIC

 PBASIC was first released in July 1990, and in the same year it was one of the

winners in the Compuserve/Portfolio Conference Programming Contest. The version

5.0 is the 19th release now and future enhancements are still expected. So, if

you find bugs or if you would like to see some new features contact me and I

will try to accommodate you and release a new version.

 PBASIC is freeware, it can be copied and distributed freely. It can not be

sold or used for commercial purposes without permission.

1.3. ACKNOWLEDGEMENTS

 Thanks to all those Compuserve for their bug reports, suggestions and words of

encouragement. Without their feedback, version 5.0 would have never seen the

light of day. Keep those cards and letters coming! The author would also like

to extend his thanks to Walter Daniel, for helping me track down the ever-

elusive bugs, and putting up with a flaky copy of version 2.9. Thanks also to

Don Messerli, for his help implementing the graphic routines to support the

.PGC graphics standard. Finally, many thanks to Ron Luks, the sysop of the

APORTFOLIO conference on Compuserve. Thanks also to all the students (Those bug

stomping fools!) in my Programming Languages Course, Spring 1991, at the

American University.

1.4. THE PACKAGE

PBASIC.EXE The interpreter (rename it `P.EXE')

PBASIC.ADR Help file to be loaded into Portfolio's Address-Book

PBASIC.TXT This text

ALTR.COM TSR for interaccion with Portfolio's built-in editor

SPB.EXE Program to Squeeze PBASIC source code. It will remove any unneeded

 spaces, line numbers and REMarks from the source code. This will

 reduce (slightly) the source code, but it will still be readable

 by the editor. This program will also help to convert GWBASIC

 programs to PBASIC.

PBCOMP.EXE Designed to compress PBASIC files. The compress ratio varies, 60%

 to 40% depending on the program. Once a file is compressed, there

 is no way to decompress it. There is no difference in running the

 file. PBASIC will automatically detect and decompress an encrypted

 file. This program also allows developers to write programs in

 PBASIC and distribute them without releasing the source code to

 the program. And last but not least, it saves valuable space on

 RAM-cards.

PBE.EXE Full screen PBASIC-editor for program development on PC. Invoke

 PBASIC from inside the editor. Access FT to transmit/receive files

 to/from the Portfolio. Remember that you need the emulation

 software I60 and I61 to run PBASIC on a regular PC.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

2. GENERAL DESCRIPTION

 The main topics I took into consideration when I was laying out the initial

design of PBASIC where:

 - Size of Interpreter (as small as possible).

 - Reasonable size BASIC programs.

 - Microsoft BASIC compatible.

 - Unique features of the Portfolio.

 - Use of the Built-in editor for Program Editing.

 PBASIC is about 4000 lines of code, it was written in Turbo C ver2.0, compiled

to an executable file just under 66k size. It was then compressed with PKLITE

ver1.01, to further reduce the size to about 44k. All this on a Gateway 2000,

33Mhz 386 PC with 4 megabytes of memory. It was tested on the Atari Portfolio,

ROM version 1.052. PBASIC requires 67k of memory to run. It is a simple batch

oriented BASIC interpreter with the following characteristics:

 - Source code is standard ASCII format.

 - Source code can be in upper or lower case.

 - 130 variables. Variable names can not exceed 8 characters in length.

 - Default string size is 256 bytes. This can be changed with SSIZE.

 - FOR/NEXT loops may be nested 10 deep.

 - GOSUBs may be nested 10 deep.

 - WHILE / WEND may be nested 10 deep.

 - REPEAT / UNTIL may be nested 10 deep.

 - Line numbers are not required for each statement. Only 100 line numbers

 are allowed. They do not have to be in sequence. Line numbers can range

 from 1 to 65535.

 - Multiple statements per line (:) is supported.

 - Up to 10 Files can be open at the same time.

 The statements and syntax are highly GWBASIC-compatible. PBASIC is not like

GWBASIC in one important feature . GWBASIC has a built-in editor, and PBASIC

does not. Instead of trying to create an editor, PBASIC makes full use of the

Portfolio's built-in editor.

2.1. INTERFACING WITH THE EDITOR

 If you run PBASIC without any parameters, it will load the last file you used

in the editor. When the program is finished PBASIC returns to DOS.

 ALTR.COM is a small TSR program that will, only from inside the editor, save

the current file and invoke PBASIC. PBASIC.EXE should be renamed P.EXE for the

`ALT_R' command to work. ALTR takes up about 450 bytes. It can be removed by

rebooting the machine. It can only be loaded into memory once. Whenever an

error is detected, an error message is displayed, along with the line number.

Press any key and PBASIC will invoke the built-in editor and point to the error

position. This will only happen if ALTR.COM is loaded and the file you are

executing is the same as the one you are editing.

2.2. RUNNING PBASIC

PBASIC can be run from the DOS command line or from a batch-file as follows:

 PBASIC [filename[.ext]] [-T] [-E] [-P]

 If the extension of the filename is omitted .BAS is assumed, if filename.ext

is left out PBASIC will try to execute the file loaded in the editor.

 The command line switch -T will turn on the trace feature. This is the same

as putting TRON at the beginning of your program. The command line switch -P

will turn off the Portfolio before the .BAS program is loaded. This will allow

the user to load PBASIC from one card, and run a program on another card.

Press any key to continue.

 The use of the switch -E (for PC only) will force Portfolio Emulation. This

can lock your computer if I60 and I61 are not loaded first.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

 If you have run the ALTR program before editing your code, you can execute

PBASIC by pressing `ALT_R' from inside the editor.

 If you are running PBASIC as a batch file, you can access the ERRORLEVEL code

generated upon exit:

 0 - Successful exit

 1 - Program aborted

 2 - STOP encountered

This ERRORLEVEL value can be modified by using EXITCODE.

2.3. BREAKING OUT OF PROGRAMS

 It appears that if you use the Ctrl_C key to break out of a PBASIC program, it

will lock up the portfolio a few minutes later. I have tried to trace this, but

to no avail. Chalk it up a difference between the PC and Portfolio. To

eliminate this problem, you can now use the ATARI key, (/|\) by itself, to exit

from a PBASIC program. Press the key at any point. As long as you hold down the

key, the error message "BREAK in xx" will remain on the screen. Release the key

and you are returned to the MS-DOS prompt. If you execute the program from the

editor, you will be returned to the editor, with the cursor pointing to the

last executed statement.

2.4. PBASIC on the PC

 PBASIC will run on a regular PC, providing you do not use any Portfolio

specific statements. If you have the Portfolio emulation software (I60, I61),

you can use all the features if you use the -E switch. PBASIC will generate an

error if you try to use a Portfolio only instruction on a PC.

 You can develop your programs on the PC with Microsoft BASIC or QuickBASIC. If

using Microsoft BASIC, be sure to save the file in ASCII format (SAVE"file",A)

so that it can be read by PBASIC. For easier development on a PC, PBE, the

PBASIC Editor is now available. PBE operates similar to Turbo Pascal, and

allows you to execute programs from inside the editor. It will also let you

transfer files back and forth to the Portfolio via FT.COM

3. CONVENTIONS USED

3.1. MATHEMATICAL EXPRESSIONS

 Single precision math. Parentheses supported. Standard operator evaluation.

Hexadecimal and Octal constants are supported.

 - negation

 ^ exponent

 * multiply

 / divide

 % remainder (MOD)

 \ integer division

 + addition

 - subtraction

 AND, OR, NOT, XOR, EQV, IMP

 <, >, <=, >=, =, <>

3.2. NOTES ON CONVENTIONS USED

 - A `variable' can be a value or a string (i.e. X=VARSEG(variable))

 - Numeric variables like X or SUMM etc. are referred to as `var'.

 - String variables like X$ or SUMM$ etc. are referred to as `str' and must

 be enclosed in quotes.

 - A variable name must be used when indicated.

 - A string name must be used when indicated.

 - An expression (exp) can contain variables, constants, funcions and

 statements.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

 - Unless otherwise noted, all parameters can be constants, variables or

 complete equations.

 - Parameters in [brackets] are optional.

 - The trigonometric functions expect expressions to be in radians (SIN, COS,

 TAN), and return values in radians (ASIN,ACOS,ATN). If you are working

 with degrees you must convert with the RAD and DEG functions respectively.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

4. BASIC STATEMENTS AND FUNCTIONS

 I have tried to keep the syntax and semantics for the statements and functions

as close to Microsoft BASIC as possible. The notes presented indicate

exceptions. There are some statements included that are not from Microsoft.

They will not run on GWBASIC and can lock up your PC!

ABS Function

 Returns the absolute value of exp.

 Syntax: varname=ABS(exp)

 Example: X=-4 : Y=ABS(X/2) => Y=2

ACOS Function

 Returns the arc cosine of exp.

 Syntax: varname=ACOS(exp)

 Example: X=0.50015 : A=ACOS(X) => A=1.04718 (60øin rad)

ALARM Portfolio Statement

 This will beep the speaker, about once a second until the user

 presses a key. The program will then continue with the next

 statement.

ARG$ Function

 Returns the command line arguments.

 Syntax: strname=ARG$(n)

 n can be a value between 0 and the number of arguments in the

 command line. (See Function ARGC for how to get the number of

 arguments). ARG$(1) would be the first parameter after the PBASIC

 command. Under DOS 3.0 and later, ARG$(0) would be the name of the

 PBASIC program.

 Example: X$=ARG$(2)

 if you typed in the command line:

 PBASIC filename.ext hi

 X$ would be `hi'

ARGC Function

 Returns the number of parameters on the command line.

 Syntax: varname=ARGC

 If ARGC returns 0, then the program from the editor is being

 executed.

 Example: X=ARGC

 if you typed in the command line:

 PBASIC filename.ext hi

 X would be 2

ASC Function

 Returns ASCII value of the first character in string.

 Syntax: varname=ASC(str)

 Example: Y$="W" : Y=ASC(Y$) => Y=87

ASIN Function

 Returns the arc sine of exp.

 Syntax: varname=ASIN(exp)

 Example: X=0.866017 : A=ASIN(X) => A=1.04718 (60øin rad)

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

ATN Function

 Returns the arc tangent of exp.

 Syntax: varname=ATN(exp)

 Example: X=1.73198 : Y=ATN(X) => A=1.04718 (60ø in rad)

BEEP Portfolio Statement

 This will cause a single beep from the speaker.

BIN$ Function

 Convert var to a Binary string. Var has to be a positive integer.

 Syntax: strname=BIN$(var)

 Example: X=3 : X$=BIN$(X) => X$="11"

BLOAD Statement

 Loads a file to location SEG:offset.

 Syntax: BLOAD "filename[.ext]", offset

 You can use DEF SEG to set the value for SEG.

BOX Portfolio Statement

 This will draw a box on the text screen.

 Syntax: BOX row1, col1, row2, col2, type

 Row1 and Col1 specify the upper left corner position of the box,

 while Row2 and Col2 specify the lower right corner. Type is 0 for

 single line box, and 1 for a double line box. Trying to draw a box

 larger than the screen (8x40) has unpredictable results.

 Example: BOX 1,1,7,40,1

 This draws a box enclosing 5 lines at the top of the text screen.

BSAVE Statement

 Copies memory to file, starting from SEG:offset for length bytes.

 Syntax: BSAVE "filename[.ext]", offset, length

CALL Statement

 Transfer control to SEG:address.

 Syntax: CALL address

 Data is passed via the registers with the REG statement/function.

 Example: BLOAD "TEST.COM", 3600

 CALL 3600 Loads TEST.COM and executes it.

CALL INTERRUPT Statement

 Invoke DOS interrupt.

 Syntax: CALL INTERRUPT var

 Data is passed via the registers with the REG statement/function.

 Example: X=54*256 : Y=0 : REG 1,X : REG 4,Y

 CALL INTERRUPT 33

 X=REG(2) : Y=REG(4): FREDSK$=STR$(100*X/Y)+"% free"

CEIL Function

 Round exp up to the next integer.

 Syntax: varname=CEIL(exp)

 Example: X=3.16 : Y=CEIL(X) => Y=4

CHAIN Statement

 Load and execute the indicated file.

 Syntax : CHAIN "[d:\path\]filename[.ext]"

 All variables are retained.

 Example: CHAIN "MYPROG.BAS"

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

CHARPTR Function

 Returns the address of the bit maps for the ASCII characters.

 Syntax : varname=CHARPTR

 There are 6 bytes for each character, 1536 bytes for 255 characters.

 This address can be used to insert your own character set.

 Example: X=CHARPTR

 FOR I=0 TO 255

 FOR J=0 TO 5

 POKE X,OWNCHR(I,J) : INCR(X)

 NEXT J

 NEXT I

CHDIR Statement

 Change the current directory to the path in str.

 Syntax : CHDIR str

 Example: CHDIR "C:\SYSTEM"

CHR$ Function

 Returns the ASCII character with the value of exp.

 Syntax : strname=CHR$(exp)

 Example: X$=CHR$(71) => X$="G"

CLICK Portfolio Statement

 Make the key click sound.

CLOSE# Statement

 Close file number f.

 Syntax : CLOSE#f

CLS Statement

 Clears the screen.

CMODE Statement

 Set character mode when printing in graphics mode.

 Syntax : CMODE=n

 The bit pattern is:

 0 Underline (+1)

 1 Reverse (+2)

 2 Double Width (+4)

 3 Upside Down (+8)

 4 Sideway (+16)

 5 Double Height (+32)

 6 Half Height (+64)

 7 Half Width (+128)

 8 OR bits (+256)

 9 XOR bits (+512)

 To set Reverse Wide: n=2+4=6. Use 24 to print sideways in the other

 direction.

COMIN Function

 Returns the ASCII value from the serial port.

 Syntax : varname=COMIN

 See TERMINAL.BAS. The input is buffered to 256 characters.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

COMMAND$ Function

 Returns the command line tail.

 Syntax : strname=COMMAND$

 Example: If you typed PBASIC filename.ext hi in the command line,

 string would be "filename.ext hi".

COMOUT Statement

 Send value to serial port.

 Syntax : COMOUT=n

 This function will automatically wait until the last character has

 been sent. See TERMINAL.BAS.

COMSET Statement

 Configure the serial port.

 Syntax : COMSET=n

 The bits of the configuration-byte n are defined as follows:

 7 6 5 4 3 2 1 0

 Baud Rate Parity Stop Bits Word Length
 0 0 0 = 110 x 0 = none 0 = 1 bits 1 0 = 7 bits

 0 0 1 = 150 0 1 = odd 1 = 2 bits 1 1 = 8 bits

 0 1 0 = 300 1 1 = even

 0 1 1 = 600

 1 0 0 = 1200

 1 0 1 = 2400

 1 1 0 = 4800

 1 1 1 = 9600

 See TERMINAL.BAS.

COMSTAT Function

 Returns the input buffer status of the serial port.

 Syntax : varname=COMSTAT

 If all bits are 0 (COMSTAT=FALSE) the buffer is empty.

 bit meaning

 0 change in clear-to-send status

 1 change in data-set-ready status

 2 trailing edge ring indicator

 3 change in receive line signal detect Modem Status

 4 clear-to-send

 5 data-set-ready

 6 ring indicator

 7 receive line signal detect

 8 receive data ready

 9 overrun error detected

 10 parity error detected

 11 framing error detected Port Status

 12 break detected

 13 transmit holding register empty

 14 transmit shift register empty

 15 timed out

 See TERMINAL.BAS

COS Function

 Returns the Cosine of exp.

 Syntax : varname=COS(exp)

 Example: A=RAD(45) : X=COS(A+RAD(15)) => Y=0.500015

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

COSH Function

 Returns the hyperbolic cosine of exp.

 Syntax : varname=COSH(exp)

 Example: X=2.993225 : Y=COSH(X) => Y=10

CSRLIN Function

 Returns the current cursor line.

 Syntax : varname=CSRLIN

 Example: X=CSRLIN+1

 LOCATE X,2 : PRINT "ok"

CWD$ Function

 Returns the current directory.

 Syntax : strname=CWD$

 Example: PRINT CWD$

DATA Statement

 Allows for data to be stored inline.

 Syntax : DATA list of values or strings

 Data statements MUST have a line number. Numbers are separated by

 commas. Data statements may be located on any line of the program.

 Strings must be enclosed in quotes.

 Example: 100 DATA 1,2,3,4,5,6

 120 DATA "Load","Merge","Save","Quit"

DATE$ Function

 Returns the system date.

 Syntax : strname=DATE$

 Example: PRINT "Time is "DATE$

DECR Statement

 Decrement a variable by 1.

 Syntax : DECR(var)

 Example: PRINT X$(I) : DECR(I) : GOTO 10

DEF fn Statement

 Creates a function named fn.

 Syntax : DEF fn(params)=expression

 All variables are global. Function names do not have to begin with

 FN. Only numerical functions are allowed.

 Examle : DEF fn0(X)=X^2+3*X+1

DEF SEG Statement

 Assigns a segment address for direct memory accessing via PEEK, POKE

 and CALL.

 Syntax : DEF SEG=exp

 Example: DEF SEG=INT(PROGLOC/16)

DEG Function

 Converts radians to degrees.

 Syntax : varname=DEG(exp)

 Example: X=0.04718 : A=DEG(X+1) => A=60ø

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

DIAL Portfolio Statement

 This will dial the `number'(characters in str) through the speaker.

 Syntax : DIAL str

 Valid characters for tones are: 0 1 2 3 4 5 6 7 8 9 A B C D * #. The

 letters must be in uppercase.

 Example: DIAL "0647328711"

DIM Statement

 Create one- or two-dimensional arrays.

 Syntax : DIM varname(size,[size])[,varname(size,[size])....]

 Numeric arrays are single precision floating point variables. Arrays

 start at 0. Arrays are not initialized to a value. Arrays must be

 defined before they are used. Upper array bounds are not checked,

 arrays are not allowed to go below 0.

 Example: DIM CELLVALUE(20,5), CELLNAME$(20,5)

DISPLAY Portfolio Statement

 Set the Portfolio screen to Normal, Static or Tracked.

 Syntax : DISPLAY exp

 0=Static, 1=Normal, 2=Tracked. The mode is only effective while in

 PBASIC. Using this statement might clear the screen depending on

 the position of the cursor.

DMS Function

 Converts degrees into degrees/minutes/seconds, in the form ddd.mmss.

 Syntax : varname=DMS(exp)

 Example: X=45 : Y=DMS(X+0.1725) => Y=45.1021

DOSVER Function

 Returns the version number of DIP-DOS.

 Syntax : varname=DOSVER

 Example: PRINT DOSVER

EDIT$ Portfolio Statement

 This function returns a string after it has been edited by the user.

 Syntax : strname=EDIT$(str1,str2)

 Str1 is the title placed on the editing box, while str2 is the

 string to be edited. The text under the window is not saved. The

 window is placed at the current cursor position.

 Example : X$="test" : T$="edit"

 X$=EDIT$(T$,X$) : PRINT X$

 X$ is edited by the user and displayed.

END Statement

 Terminate program execution and exit PBASIC.

EOF Function

 Returns TRUE if file f is at End-of-File.

 Syntax : varname=EOF(f)

 Example: If EOF(1) THEN 100

ERADR Function

 Returns the position of the error that occurred, as an offset from

 the beginning of the program.

 Syntax : varname=ERADR

 Example: PRINT "Error at "ERADR

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

ERL Function

 Returns the line number the error occurred on.

 Syntax : varname=ERL

 Example: PRINT "Error in line "ERL

ERMSG$ Function

 Returns the text of the error that occurred.

 Syntax : strname=ERMSG$

 Example: X$="ERROR! "+ERMSG$: PRINT X$

ERR Function

 Returns the error number of the last error.

 Syntax : varname=ERR

 Example: IF ERR=2 THEN END

 See appendix 5.1 for details

ERROR Statement

 Simulate Error for testing ON ERROR GOTO.

 Syntax : ERROR var

ERRWIN Portfolio Statement

 This will draw a box with a message at the specified row and column.

 Syntax : ERRWIN row, col, str

 It will then beep and wait for a keypress. The text underneath the

 message is left untouched. Trying to place the message outside the

 screen (8x40) has unpredictable results.

 Example: ERRWIN 2,15,"Wrong name!"

EVAL Statement

 Evaluates the contents of str as if it was part of a BASIC program.

 Syntax : EVAL str

 Example: X$="C=N+4 : ? C"

 PBASIC executes X$ as `C=N+4 : ? C'

EXISTS Function

 Returns TRUE if the specified file exists.

 Syntax : varname=EXISTS(str)

 Example: IF NOT EXISTS("C:\SYSTEM\PERMDATA.DAT") THEN 320

EXITCMD Statement

 Exit PBASIC, and place the contents of str in the keyboard buffer.

 Syntax : EXITCMD str

 Example: X$="DIR *.BAS"+CHR$(13)

 After exiting PBASIC all files in the current directory with the

 extension `.BAS' are listed

EXITCODE Statement

 Exit PBASIC, and set MS-DOS ERRORLEVEL variable to var.

 Syntax : EXITCODE var

 ERRORLEVEL can then be tested in a batch file.

EXP Function

 Returns e to the power of exp.

 Syntax : varname=EXP(exp)

 Example: X=EXP(3) => X=20.0855

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

FALSE Function

 Returns 0.

 Syntax : varname=FALSE

 Example: FOR I=0 TO 10: SCORE(I)=FALSE : NEXT I

FILESIZE Function

 Returns the filesize of the last file found by FINDFILE or FINDNEXT.

 Syntax : varname=FILESIZE

FINDFILE$ Function

 Returns the name of a file matching str. Wildcards are allowed.

 Syntax : strname=FINDFILE$(str)

 Example: X$=FINDFILE$ "PBASIC.EXE" : S=FILESIZE

FINDNEXT$ Function

 Returns the next file matching the criteria set by FINDFILE.

 Syntax : strname=FINDNEXT$

 Example: PRINT "Directory of ";CWD$

 X$=FINDFILE$("*.*")

 WHILE X$<>""

 PRINT X$;TAB(15);FILESIZE

 X$=FINDNEXT$

 WEND

FIX Function

 Returns the integer portion of exp.

 Syntax : varname=FIX(exp)

 Example: X=16/3 : Y=FIX(X) => Y=5

FOR Statement

 Generates a loop.

 Syntax : FOR varname=exp1 TO exp2 [STEP exp3]

 Varname is set to exp1 and then the code after the FOR Statement is

 executed until a NEXT var is encountered, then exp1 is increased by

 exp3 and code execution is repeated until var reaches the value of

 exp2.

 Example: FOR I=1 TO 10 STEP 2

 PRINT I

 NEXT I

FORMFEED Statement

 Send a formfeed to the printer.

FRE Function

 Returns the free amount of memory.

 Syntax : varname=FRE(0)

 Example: X=FRE(0) : DIM Y(10) : YMEM=X-FRE(0)

FREEFILE Function

 Returns the next free file number.

 Syntax : varname=FREEFILE

 Example: N=FREEFILE : OPEN "I",N,"SEQFIL.ASC"

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

GETDISPLAY Portfolio Function

 This function will return the current display mode.

 Syntax: varname=GETDISPLAY

 See DISPLAY statement for details.

GLOCATE Statement

 Set the graphics cursor to location row, col. Used with GPRINT.

 Syntax: GLOCATE row,col

GOSUB Statement

 Jumps to a subroutine at specified line.

 Syntax : GOSUB line number

GOTO Statement

 Jumps to specified line and continues execution.

 Syntax: GOTO line number

GPRINT Statement

 Bit mapped character display. Str is a hex-string.

 Syntax : GPRINT str

 Top bit is 0, bottom bit is 7. Expressions can be a string of

 hexadecimal values, or hex numbers. Separators are (;) and (,) where

 the comma will skip one space. This is handy for creating your own

 character set.

 0 1 2 3 4 5 6 7 8 9 A B C D E F 10... ...FF

 0 (+1)

 1 (+2)

 2 (+4)

 3 (+8)

 4 (+16)

 5 (+32)

 6 (+64)

 7 (+128)

 Example: SCREEN 6 : GLOCATE 54,150

 GPRINT "58483E28CC" : WAIT

HEX$ Function

 Converts value of exp to a hexadecimal string.

 Syntax : varname=HEX$(exp)

 Example: X$=HEX$(16) => X$="10"

IF Statement

 Conditional code execution. Dependig on exp being TRUE or FALSE.

 Syntax : IF exp THEN statement [ELSE statement]

 For more complex conditions a multi-line syntax is supported:

 Syntax : IF exp THEN

 statements

 [ELSE

 statements]

 ENDIF

 Multi-line IF statements may not be nested. There can not be

 anything after the THEN or the ELSE on the same line.

 Example: IF X-1>0 THEN

 PRINT Y(X+1)

 ELSE

 GOTO 50

 ENDIF

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

INCR Statement

 Increment var by 1.

 Syntax : INCR(var)

 Example: X=2 : INCR(X) => X=3

INKEY$ Function

 Reads a single character from the keyboard buffer.

 Syntax : strname=INKEY$

 If a key is pressed, the character is returned, otherwise, the empty

 string ("") is returned. For a function key, a 2 character string is

 returned, with the second character indicating the function key.

 Example: 10 X$=INKEY$: IF X$="" THEN 10

 Line 10 is repeated until key is pressed.

INP Function

 Returns the byte value from port number `exp'.

 Syntax : varname=INP(exp)

 Value of exp is the port address.

 Example: A=32888 : X=INP(A)

INPUT Statement

 Read input from the keyboard.

 Syntax : INPUT ["prompt" ,|;] varname

 Only one variable is allowed per input. If a comma (,) separates the

 prompt string and the varname, no question mark (?) will be printed.

 If a semi-colon (;) is used, the question mark will appear.

 Example: INPUT"Enter your name : ",X$

INPUT# Statement

 This will read a variable from file number f.

 Syntax : INPUT#f, varname

 Example: OPEN "I",3,"TEST.DAT"

 INPUT#3,X

 CLOSE#3

INPUT$ Function

 Returns the next n characters from file #f.

 Syntax : INPUT$(n,#f)

 Example: OPEN "I",2,"FORM.TXT"

 X$=INPUT$(80,#2)

 CLOSE#2

INSTAT Function

 Returns TRUE if key has been pressed, otherwise FALSE.

 Syntax : varname=INSTAT

 Example: IF INSTAT THEN 20

INSTR Funcion

 Returns the position of str2 in str1.

 Syntax : varname=INSTR(str1,str2)

 Example: X$="monster" : Y$="on"

 X=INSTR(X$,Y$) => X=2

INT(exp) Function

 Returns the integer portion of exp.

 Syntax : varname=INT(exp)

 Example: X=3.16 : Y=INT(X+2) => Y=5

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

INVERT Portfolio Statement

 Reverse the image on the graphics screen (negative).

ISALTR Function

 Returns -1 if ALTR.COM is loaded, 0 otherwise.

 Syntax : varname=ISALTR

 Example: IF ISALTR THEN 30

ISRUN Function

 Returns -1 if current program was executed via the RUN "filename"

 statement from another program.

 Syntax : varname=ISRUN

 Example: IF ISRUN THEN RUN "MENU" ELSE END

KILL Statement

 Delete filename from disk.

 Syntax : KILL str

 Example: KILL "OLDTXT.ASC"

LCASE$ Function

 Returns the lowercase version of str.

 Syntax : str2=LCASE$(str1)

 Example: X$="TEST" : Y$=LCASE$(X$) => Y$="test"

LEFT$ Function

 Returns the leftmost n characters of str.

 Syntax : str2=LEFT$(str1,n)

 Example: X$="Portfolio" : Y$=LEFT$(X$,4) => Y$="Port"

LEN Function

 Returns the length of str.

 Syntax : varname=LEN(str)

 Example: X$="Atari" : X=LEN(X$) => X=5

LINE Statement

 Line will draw a line or box in graphics mode.

 Syntax : LINE(X1,Y1)-(X2,Y2)[,C[,B[F]]]

 X1,Y1 is the start coordinate and X2,Y2 the end coordinates. C is

 the color of the line. B means to draw a box, and F is to fill the

 box. NOTE: You must write as LINE(... not LINE (...

 Example: LINE(20,50)-(45,150),1,BF

LOCATE Statement

 Move the cursor to row, col.

 Syntax : LOCATE row,col[,c]

 The optional parameter c can be used to turn the cursor on or off,

 0=off, 1=underline, 2=block.

 Example: LOCATE 2,4,2

LOG Function

 Returns the natural logarithm (ln) of exp.

 Syntax : varname=LOG(exp)

 Example: X=3 : Y=LOG(X+6) => Y=2.19722

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

LPCHR$ Statement

 Send an ASCII character with the value of exp to the printer.

 Syntax : LPCHR$(exp)

 This was done to allow the printing of characters 0 and 9, which are

 filtered by the LPRINT statement.

 Example: FOR I=0 TO 9 : LPCHR$(I) : NEXT I

LPRINT Statement

 Send output to printer. See PRINT.

 Syntax : LPRINT list of expressions

 Example: LPRINT "name: "X$(I)

LTRIM$ Function

 Strips off any leading spaces.

 Syntax : LTRIM$(str)

 Example: X$=" There are ..." : LTRIM$(X$)

MENU Portfolio Statement

 This will display a menu, allow a selection, and will return the

 item selected.

 Syntax 1: varname=MENU(row, col, d, t, s, e, str0, str1, str2...)

 Syntax 2: varname=MENU(row, col, d, t, s, -e, str(n))

 If the value returned is -1, then escape has been pressed. If the

 value returned is > 255 then (value % 256) is the selected element,

 and (value \ 256) is the top line. Elements (e) are numbered from 0.

 Row and Col indicate the location of the menu. D is the number of

 elements to display at one time. The maximum is 6. Top line (t) is

 the element at the top of the menu, and s (selected) is the element

 that the cursor is placed on. E is the number of menu entries plus

 the Title (str0). The title string is first, followed by each

 entry. Each element can be a string or a string variable.

 Example1: M=MENU(2,2,4,0,0,7,"Demo","A", "B", "C", "D", "E", "F")

 If the user picks A, M=0, for B, M=1. If the user picks F, M=517,

 which means the entry is 5, and the top line was 2. This will allow

 selection from the menu from the same position the second time it

 is invoked. You can have more entries than e specifies. After e

 number of entries, the rest are ignored.

 If the e is negative, you switch to array mode (syntax 2).

 Example2: M=MENU(2,2,4,0,0,-7,X$(5))

 Where X$(0) will contain the title string and X$(1..5) will contain

 the elements. This allows for a much more flexible addressing

 scheme.

MID$ Statement

 Replace the characters in str1, starting at position p, for length

 l, with the characters in str2.

 Syntax : MID$(str1,p[,l])=str2

 Example: X$="test03new" : Y$="04"

 MID$(X$,5,2)=Y$ => X$="test04new"

MID$ Function

 Returns a string from str1, starting at position n for m characters.

 Syntax : str2=MID$(str1,n[,m])

 Example: X$="cocktail"

 Y$=MID$(X$,5,4) => Y$="tail"

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

MKDIR Statement

 Create a directory named str.

 Syntax : MKDIR str

 Example: X$="SUBDIR" : MKDIR X$

MSD Function

 Converts degrees/minutes/seconds in the form ddd.mmss to degrees.

 Syntax : varname=MSD(exp)

 Example: X=45.1021 : Y=MSD(X+1) => Y=46.1725

NEXT Statement

 Jump back to last or matching FOR statement.

 Syntax : NEXT [varname]

 If no variable name is given, last FOR statement is used. If

 variable name is given, matching FOR is searched for and used, if

 found. This process allows for exiting early from inner loops.

 See FOR Statement

NUMFMT Statement

 Format numeric output.

 Syntax : NUMFMT="[str1]%[[0]rm.d]t[str2]"

 Str1 is a left-justified string that preceeds the numeric value.

 The 0 makes the output to be filled with leading ceros. Rm stands

 for right margin (numeric output is justified to the right at column

 rm), d is the number of digits after the decimal point. If d is 0

 there is no decimal point. The t stands for the type of format:

 %e Real [-]#.### e[+/-]###

 %E Real [-]#.### E[+/-]###

 %f Real [-]####.####

 %g Generel format (real, d is total digits used)

 % g GWBASIC format (leading space)

 %s String

 This can be used if you want all numbers in scientific or other

 format. The default is "%g". To make the porting of GWBASIC programs

 easier, you can specify the format "% g". (For more details refer to

 Turbo C's reference manual, printf)

 Example1: NUMFMT="%10.5e"

 All numeric values are output in scientific format with 5 decimals

 and justified right at column 10.

 Example2: NUMFMT="US$ %15.2f"

 Numeric values are preceeded by the left justified string `US$',

 the value itself is right-justified at column 15 with 2 decimals.

 Example3: NUMFMT="%12.3f seconds"

 Values are justified to the right at column 12, with 3 decimals and

 followed by the string `seconds'.

OCT$ Function

 Converts the value of exp to an Octal string.

 Syntax : strname=OCT$(exp)

 Example: X=57 : Y$=OCT$(X) => Y$="71"

OFF Portfolio Statement

 This will turn the Portfolio off until the user presses a key. The

 program will continue execution with the next statement.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

ON Statement

 Jump to line number depending on value of exp.

 Syntax : ON exp GOTO/GOSUB line1,line2,line3...

 Example: 20 X$=INKEY$: IF X$="" THEN 20

 ON VAL(X$) GOTO 50, 70, 90, 110, 130, 150

ON ERROR GOTO Statement

 Jump to specified line if an error occurs.

 Syntax : ON ERROR GOTO line

 A line number of 0 will disable error trapping.

OPEN Statement

 Open file number f for mode m named str.

 Syntax : OPEN "m",f,str

 Modes for m are:

 I Input

 O Output

 A Append

 f can be between 1 and 10. Only ten files may be open at a time. Str

 is any standard MS-DOS filename.

OUT Statement

 Send value of exp to the indicated port.

 Syntax : OUT port,exp

 Example: OUT 32888,(X AND 128)

PASSWORD$ Function

 Reads an 8 character string from the keyboard without displaying it.

 Syntax : strname=PASSWORD$

 Example: PRINT "Password: ";

 X$=PASSWORD : IF X$<>"mypaswrd" THEN END

PBVER Function

 Returns the version number of PBASIC.

 Syntax : varname=PBVER

PEEK Function

 Returns the byte from memory location SEG:var.

 Syntax : varname=PEEK(var)

 SEG is set via the DEF SEG instruction.

PGLOAD Portfolio Statement

 Load a .PGC file into screen memory.

 Syntax : PGLOAD str

 Example: SCREEN 8 : PGLOAD "pic1.pgc"

 WAIT : SCREEN 7

PGSAVE Portfolio Statement

 Save video memory to .PGC file.

 Syntax : PGSAVE str

 Example: PGSAVE "pic1.pgc"

PGSHOW Portfolio Statement

 Display a .PGC file, and wait n seconds.

 Syntax : PGSHOW str,n

 If n is 0, wait for keypress.

 Example: PGSHOW "pic1.pgc",5

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

PI Function

 Returns the value of PI=3.14159

 Syntax : varname=PI

POINT Function

 Returns the value of the pixel at row,col.

 Syntax : varname=POINT(row,col)

 If this function does not appear to work, try running FIX0D, to fix

 the ROM pixel read function.

 Example: FOR I=1 TO 8

 X=POINT(I,1) : Y=Y+X*(2^(I-1))

 NEXT I

POKE Statement

 Place value of exp at SEG:var.

 Syntax : POKE var,exp

 SEG is set via the DEF SEG statement. NOTE: Due to the design of the

 Portfolio, if you poke screen memory (DEF SEG=&HB000), the value may

 not appear. After you poke, you should use the REFRESH statement to

 update the screen.

 Example: POKE 45056,X+107

PORT Portfolio Function

 Detects if running on a Portfolio or a PC.

 Syntax : varname=PORT

 This function will return a -1 if running on a Portfolio, a 0 if

 not. Handy if you want to run a program on both machines without

 locking up the PC. WARNING: There is no positive way to identify the

 Portfolio. This function checks to see if the Interrupt 61h vector

 is pointing to 0000:0000. This is not normally used on the PC, but

 is on the Portfolio. If you are running a TSR that takes over this

 vector, PORT will return 1.

POS Function

 Returns the current cursor column.

 Syntax : varname=POS(0)

 Example: CCOL=POS(0)

PRINT Statement

 Displays expressions in list on the screen.

 Syntax : PRINT [@var,] list of expressions

 List of expressions can consist of strings, variables, constants

 and/or expressions, separated by a comma (,), semi-colon (;) or a

 space (). The `?' can be used as an abbreviation for PRINT. @var

 indicates screen position (for Model-100 compatibility), var is the

 order number as if cursor poitions where numbered 0-319, from left

 to right, from line 1 to 8 (40 columns by 8 rows). The current

 cursor position would be (CSRLIN-1)*40+POS(0). The PRINT statement

 works in graphics mode, but the screen will not scroll.

 Example: PRINT @83,"This is "X$

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

PRINT# Statement

 Same as PRINT, but send output to file f.

 Syntax: PRINT#f, list of expressions

 (You can not use @var like in the PRINT Statement)

 Example: OPEN "O",1,"test.seq"

 PRINT#1, X$, Y$, A$

 CLOSE#1

PRINT USING Statement

 Display variables in indicated format.

 Syntax : PRINT[@var,] USING "[str1]%[[0]rm.d]t[str2]"; list

 This is not GWBASIC compatible. To implement the full version of the

 PRINT USING would take up too much room. This version is like C's

 printf. The format describing string, is the same used in the NUMFMT

 statement indicating the format to print a single variable. Each

 variable in the list is printed with that format. For more details,

 see NUMFMT Statement. @var indicate screen position 0-319, see PRINT

 Statement.

PRINT# USING Statement

 Same as PRINT USING, but send output to file f.

 Syntax : PRINT#f, USING "[str1]%[[0]rm.d]t[str2]"; list of variables

 (@var can not be used here).

 Example: OPEN "O",1,"test.seq"

 PRINT#1, USING "US$ %10.2f cash";X$, Y$, A$

 CLOSE#1

PRINTER Statement

 This is a toggle to start copying all PRINT statements to the

 printer. Issue it again and it will toggle off. It can be used

 instead of converting all PRINTs to LPRINTs. Information will still

 be displayed on the screen. This will not wrap the output lines like

 the screen will.

PROGLOC Function

 Returns the address of the BASIC program.

 Syntax : varname=PROGLOC

 Example: X=PROGLOC : Y=X+ERADR

PRTSC Statement

 This invokes the PRINT SCREEN function to copy the screen out to the

 printer. If you are using a laser printer, you might want to use a

 FORMFEED after this to do a page eject.

PSET Statement

 Set the pixel at row, col to exp.

 Syntax : PSET(col, row) [, exp]

 The Portfolio, regardless of the screen mode, has a maximum of

 240x64 for col, row. Exp can evaluate to 0 or 1 (on or off).

 Example : PSET(1,1),1

RAD Function

 Converts degrees to radians.

 Syntax : varname=RAD(exp)

 Example: X=RAD(45) => X=0.785385

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

RAND Function

 This will return a number between 0 and exp-1.

 Syntax : varname=RAND(exp)

 Example: A=RAND(256)

RANDOMIZE Statement

 Initialize the random number generator.

READ Statement

 Read the contents of the variables from the DATA statements.

 Syntax : READ list of variables

 Variables can be simple or array.

 Example: FOR I=1 TO 5 : READ X$(I) : NEXT I

 READ Y$: GOTO 20

 100 DATA "a)","b)","c)","d)","e)","options"

REFRESH Portfolio Statement

 Copy video memory to the LCD controller. Needed for when you are

 doing direct write to screen memory (i.e. with the POKE statement).

REG Statement

 Set CPU register reg to value of var.

 Syntax : REG reg,var

 Allows for access to the 8086's register set. Values for reg are:

 1 - AX 3 - CX 5 - SI 0 - Flags

 2 - BX 4 - DX 6 - DI

 Example: X=54*256 : REG 1,X

 Y=0 : REG 4,Y : CALL INTERRUPT 33

REG Function

 Returns the values in the CPU registers.

 Syntax : varname=REG(reg)

 Allows for access to the 8086's register set. Values for reg are:

 1 - AX 3 - CX 5 - SI 0 - Flags

 2 - BX 4 - DX 6 - DI

 Example: FB=REG(2) : TB=REG(4)

 V=FB*100/TB : PRINT V"%"

REM Statement

 Ignore to end of line, remark.

 Syntax : REM any text

 You can also use the quote (') mark as a REM statement.

 Example: X=0 : Y=0 : REM intialize coordinates

REPEAT/UNTIL Statement

 Statements between the REPEAT and UNTIL statements are executed

 until exp becomes TRUE.

 Syntax : REPEAT statments UNTIL exp

 Example: REPEAT INCR(X) UNTIL Y=X*10

RESTORE Statement

 Set the internal data pointer to the specified line number.

 Syntax : RESTORE [line]

 Line number specified must be a data statement. If no line number

 is given, the data pointer will point back to the first data

 location.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

RESUME Statement

 After an error is trapped via ON ERROR GOTO, RESUME will allow a

 program to continue at the indicated line number.

 Syntax : RESUME line

 Example: IF X=0 THEN X=1 : RESUME 10

 IF Y=10 THEN Y=0 : RESUME 20

RETURN Statement

 Returns from a subroutine invoked via a GOSUB. Always refers to the

 last GOSUB executed. Execution continues at the next statement or

 function after that GOSUB.

REVERSE$ Function

 Returns the reverse of a string.

 Syntax : str1=REVERSE$(str2)

 Example: X$="LATOT" : Y$=REVERSE$(X$) => Y$="TOTAL"

RIGHT$ Function

 Returns the rightmost n characters from string.

 Syntax : strn2=RIGHT$(str1,n)

 Example: X$="escape" : Y$=RIGHT$(3,X$) => Y$="ape"

RMDIR Statement

 Remove a directory from the disk.

 Syntax : RMDIR str

 Directory must exist and must be empty.

 Example: RMDIR "a:\apps"

RND Function

 This will return a number between 0 and 1.

 Syntax : varname=RND

 Example: X=INT(100*RND/2)

ROMVER Portfolio Function

 This function will return the version number of the Portfolio ROMs.

 Syntax : varname=ROMVER

 Example: X=ROMVER : PRINT "ROM ver. "X

RTRIM$ Function

 Strips any trailing spaces from a string.

 Syntax : RTRIM$(str)

 Example: X$="similar " : RTRIM$(X$)

RUN Statement

 Load and execute a program with the name contained in str.

 Syntax : RUN str

 All the variables are reset.

 Example: RUN "a:\basic\menu.bas"

SCREEN Function

 Returns the current video mode.

 Syntax : varname=SCREEN

 See the SCREEN statement for more information.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

SCREEN Statement

 Set the screen mode.

 Syntax : SCREEN n

 There is no testing for validity. Some of the values that work on

 the Portfolio are:

 4 graphics 320x200

 5 graphics 320x200

 6 graphics 640x200

 7 text 80x25

 8 graphics 160x200

 10 graphics 640x200

 These are standard PC modes, but remember that the Portfolio screen

 is only 240x64. If you use the screen function of the portfolio, it

 is highly recommended that you set the screen back to mode 7 before

 you exit. Many portfolio utilities only work in mode 7. At present,

 text will not be displayed properly on a graphics screen.

SCRLOAD Portfolio Statement

 Copy the contents from str back to the screen.

 Syntax : SCRLOAD strname

 See SCRSAVE for details.

SCRSAVE Portfolio Statement

 Save the contents of the screen to str.

 Syntax: SCRSAVE strname

 Using SSIZE, set the size of the strings to at least 325 since the

 screen requires 320 bytes to be saved. No check is made to see if

 enough memory is available.

 Example: SSIZE=325:X$="" : rem initialize X$

 SCRSAVE X$: rem save it

 SCRLOAD X$: rem restore it

SGN Function

 Returns the sign of exp.

 Syntax : varname=SGN(exp)

 SGN will return -1 if exp < 0, 0 if exp=0 and 1 if exp >0.

 Example: X=-32 ; Y=SGN(X) => Y=-1

SHIFT Statement

 Set the Shift flags.

 Syntax : SHIFT=var

 See SHIFT function for the bit map.

 Example: SHIFT = 32 : rem set numlock on

SHIFT Function

 Returns the status of the shift keys.

 Syntax : varname=SHIFT

 Bit Meaning

 0 Right Shift Key is down (+1)

 1 Left Shift Key is down (+2)

 2 Ctrl Key is down (+4)

 3 Alt Key is down (+8)

 4 Scroll Lock On (+16)

 5 Num Lock On (+32)

 6 Caps Lock On (+64)

 7 Insert On (+128)

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

SIN Function

 Returns the sine of exp.

 Syntax : varname=SIN(exp)

 Example: A=RAD(45) : X=SIN(A+RAD(15)) => X=0.866017

SINH Function

 Returns the hyperbolic sine of exp.

 Syntax : varname=SINH(exp)

 Example: X=2.998225 : Y=SINH(X) => Y=10

SOUND Portfolio Statement

 This will activate the tone generator.

 Syntax : SOUND var1,var2

 Var1 is the duration of tone in 10 msec intervals. Var2 is the

 tone's code-number. The following codes are taken from the Atari

 Portfolio Technical Reference Manual, copyrighted by the Atari

 Corporation:

 CODE NOTE Frequency (Hz)

 48 D5# 622.3

 49 E5 659.3

 50 F5 698.5

 51 F5# 740.0

 52 G5 784.0

 53 G5# 830.6

 54 A5 880.0

 55 A5# 932.3

 56 B5 987.8

 57 C6 1046.5

 58 C6# 1108.7

 41 D6 1174.7

 59 D6# 1244.5

 60 E6 1318.5

 61 F6 1396.9

 14 F6# 1480.0

 62 G6 1568.0

 44 G6# 1661.2

 63 A6 1760.0

 4 A6# 1864.7

 5 B6 1975.5

 37 C7 2093.0

 47 C7# 2217.5

 6 D7 2349.3

 7 D7# 2489.0

 Aside from these codes, other values will produce sounds as well.

SPACE$ Function

 Returns a string of exp number spaces.

 Syntax : strname=SPACE$(exp)

 Example: X$="Description": Y$="Amount"

 Z$=X$+SPACE$(39-LEN(X$)-LEN(Y$))+Y$

SPC Function

 Same as SPACE$, implemented for GW-Basic compatibility.

 Syntax : strname=SPC(exp)

 See SPACE$ for details.

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

SQR Function

 Returns the Square Root of exp.

 Syntax : varname=SQR(exp)

 Example: X=6 : Y=SQR(X+3) => Y=3

SSIZE Statement

 This sets the default string size.

 Syntax : SSIZE=var

 Normally, strings are set to 256 bytes in length. In many cases,

 this can waste a large amount of memory. For example, A$(100)

 normally requires about 25600 bytes. If SSIZE=80, it only requires

 about 8100 bytes. This should normally be set only once at the

 beginning of the program. The range of var can be 1 to 350. You can

 use it elsewhere in the program, but be careful.

STATUS Portfolio Statement

 This will enable or disable the Status line. This is the line that

 you see when you use the <LOCK> key on the Portfolio.

 Syntax : STATUS exp

 exp=0 for off, exp=1 for on.

STOP Statement

 To allow for "breakpoints", STOP will terminate the program and

 display the line number. It will point the built-in editor to the

 last position executed if the editor file is the same as the file

 being executed.

STR$ Function

 Returns the string representation of exp.

 Syntax : str=STR$(exp)

 Example: X$=STR$(17+4) => X$="21"

STRING$ Function

 Returns a string composed of n characters with ASCII value m.

 Syntax : str=STRING$(n,m)

 Example: X$=STRING$(5,42) =>X$="*****"

SWAP Statement

 Exchange the contents of two variables.

 Syntax : SWAP variable1, variable2

 The variables must be of the same type (string or value).

 Example : SWAP X$,Y$: SWAP X,Y

SYSTEM Statement

 END and SYSTEM have the same effect.

TAB Function

 Moves the cursor to column number col.

 Syntax : TAB(col)

 Example: PRINT "Date:"; : TAB(7) : PRINT DATE$

TAN Function

 Returns the tangent of exp (exp has to be in radians).

 Syntax : varname=TAN(exp)

 Example: A=RAD(45) : X=TAN(A+RAD(15)) => X=1.73198

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

TANH Function

 Returns the hyperbolic tangent of exp.

 Syntax : varname=TANH(exp)

 Example: X=10 : Y=TANH(X) => Y=1

TICK Portfolio Statement

 Sets the Clock tick speed.

 Syntax : TICK exp

 If exp is 0 clock-tick is Normal (1 tick every 128 seconds). If exp

 is 1, clock-tick is Fast (1 tick every second). Fast clock-tick

 increases power consumption dramatically.

 Example: CT=0 : TICK ABS(CT-1)

TIME$ Function

 Returns the system time.

 Syntax : strname=TIME$

 Example: PRINT TIME$

TIMER Function

 Returns the number of seconds since midnight.

 Syntax : varname=TIMER

 TIMER has a precision of half a second.

 Example: X=TIMER : WAIT : X=TIMER-X

TROFF Statement

 Disable line tracing.

TRON Statement

 Enable line tracing. Will display the line number in brackets

 ([line]). Using this statement will slow down the program execution.

 TRON can be placed anywhere in the program.

TRUE Function

 Returns -1.

 Syntax : varname=TRUE

 Example: X=ABS(X+TRUE)

UCASE$ Function

 Returns the uppercase version of a string.

 Syntax : strname=UCASE$(str)

 Example: INPUT"Name :";X$: Y$=UCASE$(X$)

VAL Function

 Returns the numeric value leading a string.

 Syntax : varname=VAL(str)

 Example: X$="2ndVersion" : Y$="0061D352001"

 X=VAL(XS) : Y=VAL(Y$) => X=2 and Y=61

VARSEG Function

 Returns the segment of a variable.

 Syntax : varname=VARSEG(variable)

 Example: XS=VARSEG(X$)

VARPTR Statement

 Returns the offset of a variable.

 Syntax : varname=VARPTR(variable)

 Example: XO=VARPTR(X$)

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

VCSRLIN Portfolio Function

 Returns the current virtual cursor line.

 Syntax : varname=VCSRLIN

 Example: X=VCSRLIN

VLOCATE Portfolio Statement

 Move the virtual cursor to row, col.

 Syntax : VLOCATE row,col

 This location will be at position 1,1 on the physical screen.

 Example: VLOCATE 1,41

VMOVE Portfolio Statement

 Move the screen in direction d for n number of lines.

 Syntax : VMOVE d,n

 Works only in Static and Tracked modes. Same as using the ALT_arrow

 keys. Values for dir are 1=Up,2=Down,3=Left,4=Right.

VPOS Portfolio Function

 Returns the current virtual cursor column.

 Syntax : varname=VPOS(0)

 Example: X=VPOS(0)

WAIT Statement

 Stop program execution until the user presses a key. Unlike the

 GWBASIC version, this only waits for a key press, it gives no prompt

 and returns no value. After a key is pressed execution continues

 with the code after the WAIT statement.

WHILE/WEND Statement

 Perform a loop as long as exp is TRUE.

 Syntax : WHILE exp... ...WEND

 All the statements between the WHILE and WEND statements are

 executed while exp is TRUE. If exp is FALSE, the loop is not

 executed.

 Example: WHILE INP(32888)=255

 INCR(X) : Y=TIMER-Y

 PRINT X,Y

 WEND

WKSREAD Function

 Returns the numeric contents of one cell from a worksheet file.

 Syntax : varname=WKSREAD("filename[.ext]",row,col)

 Default Extension is .WKS. Row/Col start at 0,0.

 Example : X=WKSREAD("COSTS.WKS",4,1)

 X is the value of cell B5 in "COSTS.WKS"

WKSREAD$ Function

 Returns the string contents of one cell from a worksheet file.

 Syntax : X$=WKSREAD$("filename[.ext]",row,col)

 Default Extension is .WKS. Row/Col start at 0,0.

 Example: X$=WKSREAD$("COSTS.WKS",9,3)

 This returns the string in cell D10 of "COSTS.WKS"

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

WKSTYPE Function

 Returns the type of the specified cell in a worksheet file.

 Syntax : varname=WKSTYPE("filename[.ext]",row,col)

 Default Extension is .WKS. Row/Col start at 0,0.

 Values returned:

 1 EOF 12 Blank

 13 Integer 14 Real

 15 Label 16 Formula Result (Real)

 Example: X=WKSTYPE("COSTS.WKS",1,27)

 This would return a value for the type of cell AB2

WRITE Statement

 Similar to PRINT, but each element is separated by a comma and

 strings are enclosed in quotes.

 Syntax : WRITE list of expressions

 Example: WRITE X$," ",X," ",Y

WRITE# Statement

 Same as WRITE, but send output to file.

 Syntax : WRITE#f list of expressions

 Example: WRITE#1 X$," ",X," ",y

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

5. APPENDIX

5.1. ERROR NUMBERS AND MESSAGES

 1 NEXT without FOR

 2 Syntax Error

 3 RETURN without GOSUB

 4 Out of DATA

 5 Illegal Function Call

 6 Overflow

 7 Out of Memory

 8 Undefined Line Number

 9 Subscript Out of Range

 10 Duplicate Definition

 11 Division by Zero

 13 Type Mismatch

 14 Out of String Space

 15 String Too Long

 18 Undefined User Function

 19 No RESUME

 20 RESUME without Error

 22 Missing Operand

 30 WEND without WHILE

 31 Array Undefined

 32 Not A Variable

 33 Too Many Line Numbers

 34 Duplicate Line Number

 35 Too Many Nested FORs

 36 Too Many Nested GOSUBs

 37 Name/Line Number Too Long

 38 BREAK

 39 Portfolio Only

 51 Internal Error

 52 Bad File Number

 53 File Not Found

 54 Bad File Mode

 61 Disk Full

 73 Advanced Feature

 76 Path Not Found

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

5.2. ASCII chart

No char No char No char No char No char No char No char No char

000 NUL 032 064 @ 096 `

001 SOH 033 ! 065 A 097 a

002 STX 034 " 066 B 098 b

003 ETX 035 # 067 C 099 c

004 EOT 036 $ 068 D 100 d

005 ENQ 037 % 069 E 101 e

006 ACK 038 & 070 F 102 f

007 BEL 039 ' 071 G 103 g

008 BS 040 (072 H 104 h

009 HT 041) 073 I 105 i

010 LF 042 * 074 J 106 j

011 VT 043 + 075 K 107 k

012 FF 044 , 076 L 108 l

013 CR 045 - 077 M 109 m

014 SO 046 . 078 N 110 n

015 SI 047 / 079 O 111 o

016 DLE 048 0 080 P 112 p

017 DC1 049 1 081 Q 113 q

018 DC2 050 2 082 R 114 r

019 DC3 051 3 083 S 115 s

020 DC4 052 4 084 T 116 t

021 NAK 053 5 085 U 117 u

022 SYN 054 6 086 V 118 v

023 ETB 055 7 087 W 119 w

024 CAN 056 8 088 X 120 x

025 EM 057 9 089 Y 121 y

026 SUB 058 : 090 Z 122 z

027 ESC 059 ; 091 [123 {

028 FS 060 < 092 \ 124 |

029 GS 061 = 093] 125 }

030 RS 062 > 094 ^ 126 ~

031 US 063 ? 095 _ 127
Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

5.4. PORTFOLIO MEMORY MAP

 FFFFF ﾉﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍｻ
 ｺ System ROM A ｺ
 ｺ 128 KBytes ｺ
 ｺ ｺ
 E0000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾎﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍｻ
 ｺ System ROM B ｳ Credit Card Memory ｺ
 ｺ 128 KBytes ｳ (A: or B:) ｺ
 ｺ ｳ ｺ
 C0000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾎﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍｼ
 ｺVideoRAM Mirror unusedｺ
 ｺ ｺ
 B1000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄｶ
 ｺ MDA VideoRAM ｺ
 ｺ 4 KBytes ｺ
 ｺ ｺ
 ｺ ｺ
 B0000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄｶ
 ｺ not used ｺ
 A0000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄｶ
 ｺ not used ｺ
 9F000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄｶ
 ｺ Expansion Area ｺ
 ｺ up to 512 KBytes ｺ
 ｺ ｺ
 ｺ ｺ
 ｺ ｺ
 3F000 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄｶ
 ｺ System RAM ｺ
 ｺ 124 KBytes ｺ
 ｺ (including C:) ｺ
 ｺ ｺ
 00000 ﾈﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍｼ
 The internal 128 KBytes are split into 124 KBytes RAM and 4 KByte Video RAM.

The space needed for ramdrive C: is taken from the 124 KBytes. The total

available memory is always 124 KBytes minus ramdrive C: plus an eventually

connected memory expansion (internal o external).

 When a memory card is accessed in drive A: or B: the address range of System

ROM B is used for that period of time, afterwards it is swapped back.

 Due to Portfolio's hardware design you won`t see any direct writing to video

RAM util you `refresh' the screen (by doing this Video RAM is copied to the

LCD-driver).

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

5.6. Port Addresses

 ﾉﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾑﾍﾍﾍﾍﾍﾍﾑﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍｻ
 ｺ Address ｳ Size ｳ Description ｺ
 ﾇﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾅﾄﾄﾄﾄﾄﾄﾅﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄﾄｶ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ 1020 ｳ 1 ｳ Serial Output Control Register ｺ
 ｺ 1021 ｳ 1 ｳ Serial I/O Register ｺ
 ｺ 1022 ｳ 1 ｳ Serial Input Status Register ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ 32784 ｳ ｳ LCDisplay Data Register ｺ
 ｺ 32785 ｳ ｳ LCDisplay Command Register ｺ
 ｺ ｳ ｳ ｺ
 ｺ 32864 ｳ 1 ｳ LCDisplay Contrast Value (0-255) ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ 32888 ｳ 1 ｳ Parallel Port A ｺ
 ｺ 32889 ｳ 1 ｳ Parallel Port B ｺ
 ｺ 32890 ｳ 1 ｳ Parallel Port C ｺ
 ｺ 32891 ｳ 1 ｳ Parallel Port Control Register ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ 32896 ｳ ｳ Peripheral ID ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ｺ ｳ ｳ ｺ
 ﾈﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾏﾍﾍﾍﾍﾍﾍﾏﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍﾍｼ

Portfolio BASIC, version 5.0 (c) 1991 by BJ Gleason, The American University

SAMPLE FILES

C.BAT Calculates expression from the DOS command line. Invokes PBASIC.EXE

 to calculate and display answer.

 Example: C 123*(567+9845)/18

TEST47.BAS A program to exercise the interpreter. Should not generate any

 errors. It will run on a PC or Portfolio. Take a look at it, it

 demos many of the features of the Portfolio Only routines.

MENU.BAS A program launcher for all the demo programs.

100DAYS.BAS Calculates 100 days after a date.

2CURVE.BAS Graph Plot program. Written by Rob Kunstadt.

ADDTIME.BAS Program to add up time in minutes and Seconds. Written by Louis

 Shapiro.

BAR.BAS Bar Chart program. Written by Rob Kunstadt.

CHART.BAS Chart hours worked. Written by Rob Kunstadt.

CIRCLE.BAS Demo of Circle Drawing Subroutine.

DAYS.BAS Calc the number of days between two dates.

ETCH.BAS Simple Drawing Program now with PGC support.

REV.BAS Game of Reverse.

RUNMAN.BAS A program to demo the new graphics functions.

TERMINAL.BAS Simple Terminal Program.

VADERS.BAS Space Invaders program from Model 100 forum.

QCHESS.BAS Chess Program from the Model 100 forum.

WKSPLOT.BAS Plot *.WKS. Ranges as BAR or XY graphs.

WKSPLOT.WKS Sample .WKS file for WKSPLOT.BAS.

The MUSIC Files by John Fraser

BACH1.BAS
BACH2.BAS

BETH2.BAS

BDAY.BAS

KRIEGER.BAS

PETER1.BAS

MUSIC.TXT Notes from the author.

Portfolio Graphic Files (Compressed) by Don Messerli

BOMB.PGC

FUJI.PGC

PORTF.PGC

USA.PGC

SPRIAL.PGC

GORBY.PGC

PGDEMO.BAS Sample program to demo PGC files.

